

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

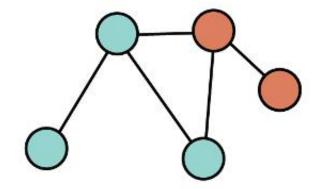
Graph Neural Networks

Plan for Today

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Project 4 Colors

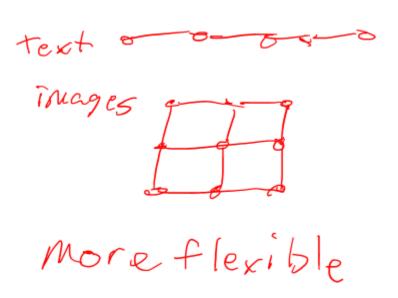
Graph Neural Networks



Neural architectures that process graphs.

Three challenges:

- 1. Variable topology
- 2. Size (billions of nodes)
- 3. Single monolithic graph

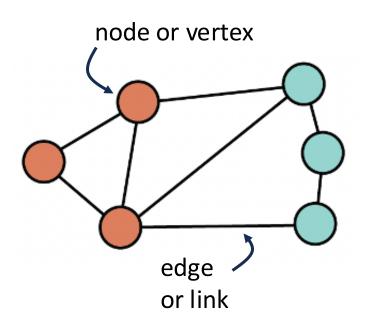


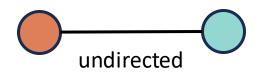
Graph (Network)

 general structure composed of nodes (vertices) and edges (links)

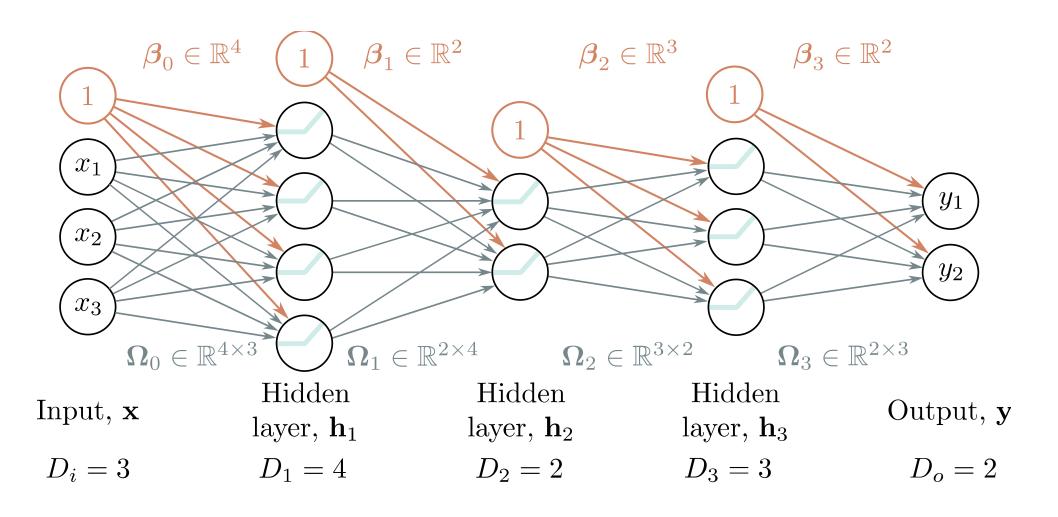
edges can be undirected or directed

 a graph with directed edges and no cycles (no loops) is called directed acyclic graph (DAG)



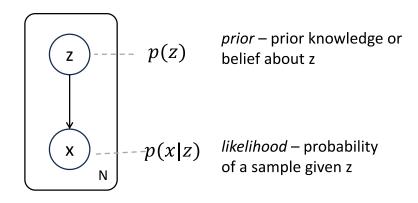


Directed Example – Feed Forward Network



Directed Example – Bayesian Graphical Model

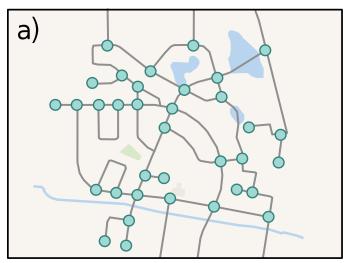
Preliminaries: Bayesian Models

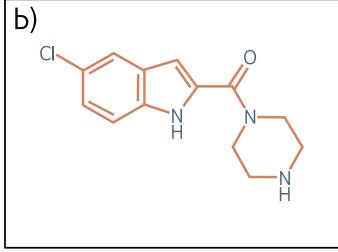


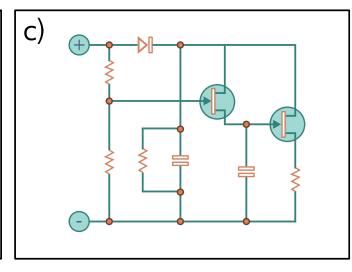
Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

27

Undirected Examples







road networks

nodes: physical locations or

landmarks

edges: connecting roads

chemical molecules

nodes: atoms

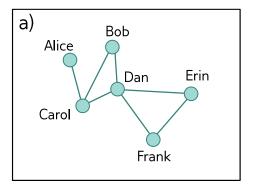
edges: chemical bonds

electrical circuits

nodes: components or junctions

edges: wires/electrical connections

Examples

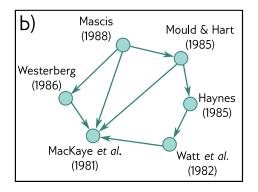


social networks

nodes: people

edges: friendships

(undirected)

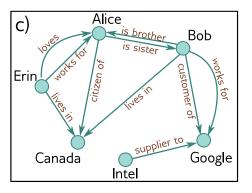


science literature

nodes: papers

edges: citations

(acyclic directed)



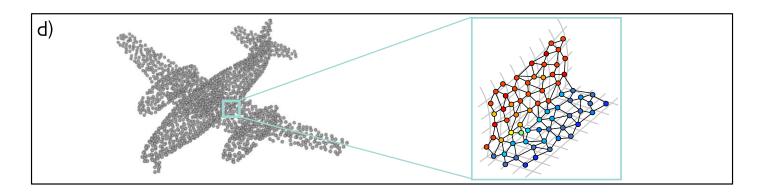
knowledge graph

nodes: objects

edges: named relationship

(cyclic directed)

Example – Geometric Point Cloud

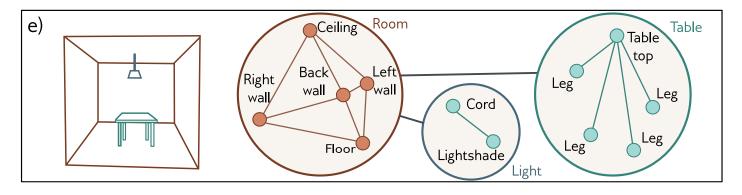


nodes: positions in 3D space (vertex in 3D graphics)

edges: connections to nearby points

(undirected)

Example – Scene Graph



hierarchical graph showing relationship between objects in a 3D scene

nodes: composite graphs or objects in 3D space

edges: connections to nearby points

(undirected)

Other examples

- Wikipedia nodes are articles, edges are hyperlinks between articles
- Computer programs nodes are syntax tokens, edges are computation between tokens (tensor graph from Gradients lecture)
- Protein interactions nodes are proteins, edges exist where two proteins interface
- Set or list every element is connected to every other element
- image each pixel is a node with edges to the eight adjacent pixels

Any Questions?

Moving on

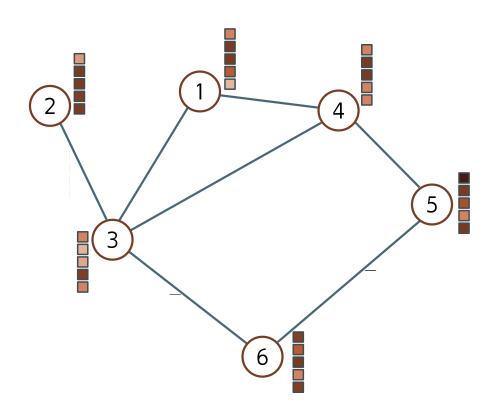
- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Graph representation

2 1 4 5

Example undirected graph with 6 nodes

Graph representation – node embedding



Example undirected graph with 6 nodes

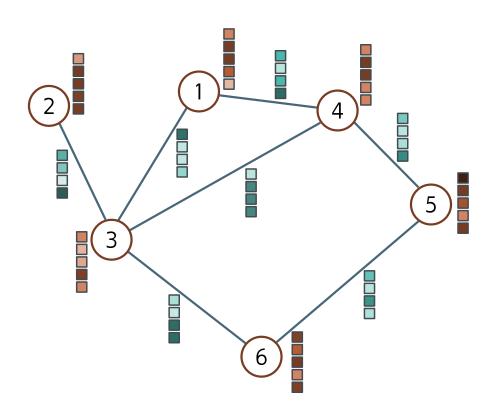
Information about a node is stored in a *node*

Dinitial data?

embedding

14

Graph representation – edge embedding



Example undirected graph with 6 nodes

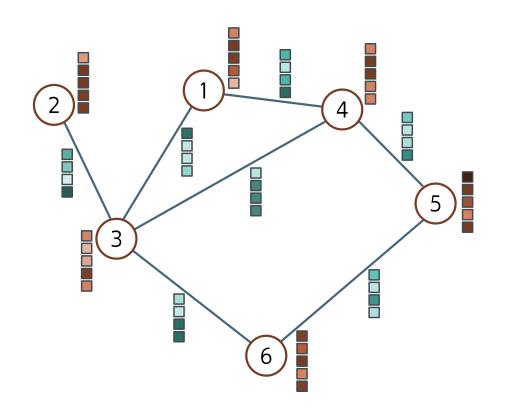
Information about a node is stored in a *node embedding*

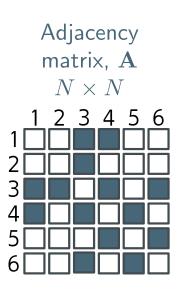
Information about an edge is stored in an edge

what does this connection represent?

embedding

Graph representation – adjacency matrix





Assume we have N nodes

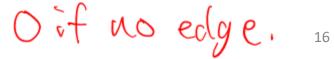
The graph connections can be represented by an *adjacency matrix*

Where a value of 1 at (m, n) represents a connection between nodes m and n.

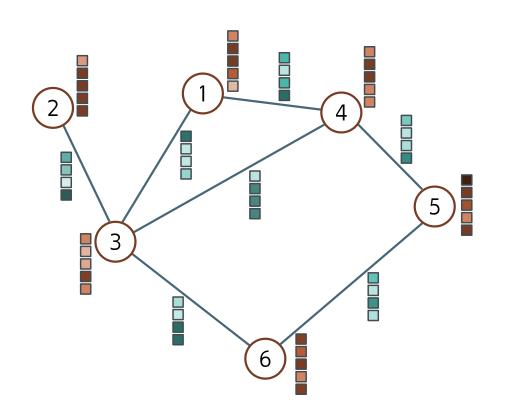
For undirected graphs the matrix is always symmetric about the diagonal

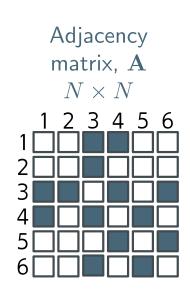
Diagonal is zero – no edge to itself

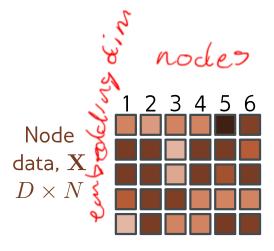
Can be very sparse



Graph representation – node data matrix







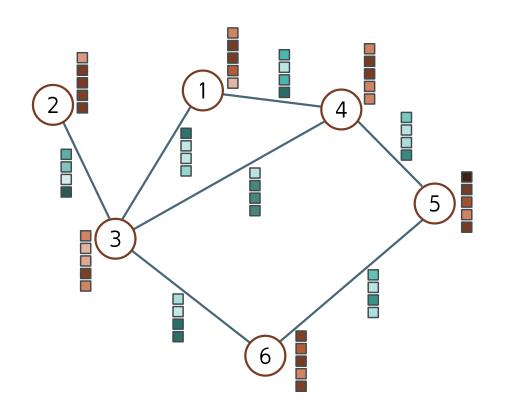
All the node data in the form of node embeddings can represented by a *Node data matrix*

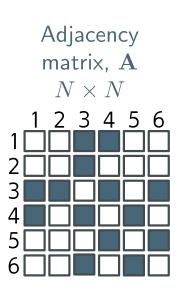
Where *D* is the dimension of the note embedding and

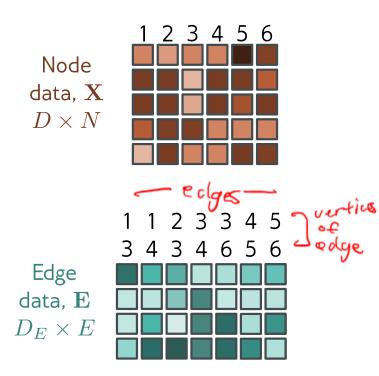
N is the number of nodes

will be analogous to token Embeddings for LLMs 17

Graph representation – edge data matrix







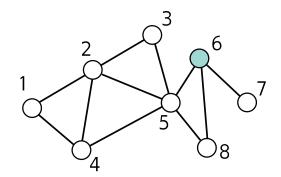
Similarly, all the edge embedding information can be stored in an *Edge data matrix*, where:

 D_E is the dimension of the edge embedding vector and E is the number of edges

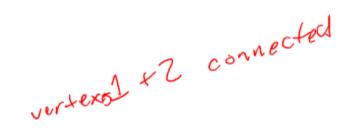
Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs



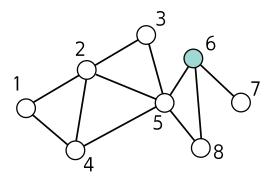
Assume we have an 8-node undirected graph





$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency matrix for this graph.

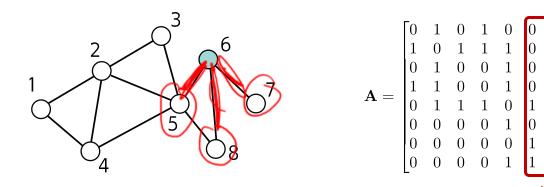


$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

adjacency matrix

nocle
$$(x) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
(selection)

We can one hot encode representation of node 6



$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

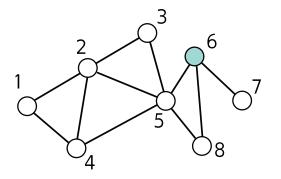
$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

One-hot encoding vector of all nodes directly connected node 6

If we pre-multiply the one-hot encoded data node vector x by adjacency matrix A we get the 6th column of A indicating direct connections to other nodes

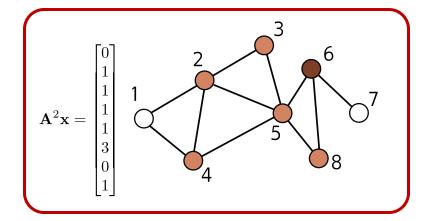
same as selecting UM token embedding u/ 1 hot



If we pre-multiply again by A, we get a vector showing the number of times we can get to each node in 2 steps.

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

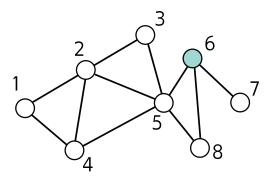


Graph showing all nodes that can be reached in *exactly* 2 steps.

NOT <2, EXACTLY Z

Pre-multiplying x by A twice is equivalent to the matrix A²

Shows how many times you can get from node m to node n in 2 steps



$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

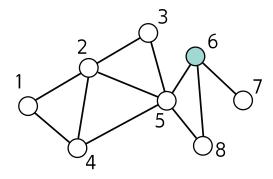
$$\mathbf{A}^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 4 & 1 & 2 & 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 2 & 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 3 & 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 & 5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{A}^{2}\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 3 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{A}^{2}\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 3 \\ 0 \\ 1 \end{bmatrix}$$



$$\mathbf{A}^{2} = \begin{bmatrix} 2 & 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 4 & 1 & 2 & 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 2 & 1 & 1 & 0 & 1 \\ 1 & 2 & 2 & 3 & 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 & 5 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \end{bmatrix}$$

Example for L=2

When you raise the adjacency matrix to the power of L (pre-multiply L-1 times),

the entry at position (m, n) of \mathbf{A}^L contains the number of unique walks of length L from node n to node m

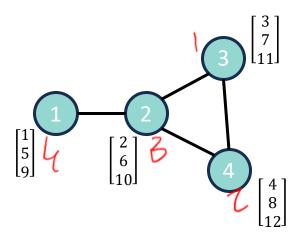
<u>Note</u>: this is not the same as the number of unique paths since it includes routes that visit the same node more than once.

a non-zero entry at position (m, n) indicates that the distance from m to n must be less than or equal to L.

See Notebook 13.1 – Encoding Graphs

Permutation of node indices

Since node indexing is arbitrary, we can permute the node indices

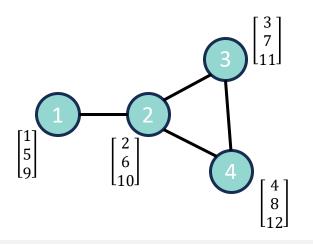


$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
node data

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 adjacency matrix

Permutation of node indices

Since node indexing is arbitrary, we can permute the node indices



$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$
node data

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 adjacency matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

We can express this mathematically with a permutation matrix, P

New:
$$(1 2 3 4)$$
Old: $(3 4 2 1)$

$$\mathbf{X}' = \mathbf{XP} = \begin{bmatrix} 3 & 4 & 2 & 1 \\ 7 & 8 & 6 & 5 \\ 11 & 12 & 10 & 9 \end{bmatrix}$$

Permute the columns of the Node data matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \mathbf{X}' = \mathbf{X}\mathbf{P} = \begin{bmatrix} 3 & 4 & 2 & 1 \\ 7 & 8 & 6 & 5 \\ 11 & 12 & 10 & 9 \end{bmatrix} \qquad \mathbf{A}' = \mathbf{P}^{\mathsf{T}}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}$$

Permute both the rows and column of the Adjacency matrix

Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Graph Neural Network

- A graph neural network is a model that takes the node embeddings X and the adjacency matrix A as inputs and passes them through a series of K layers. Sounds like layers of X and the layers of X and the adjacency
- The node embeddings are updated at each layer to create intermediate "hidden" representations \mathbf{H}_K before finally computing output embeddings \mathbf{H}_K .
- At the start of this network, each column of the input node embeddings **X** just contains information about the node itself.
- At the end, each column of the model output \mathbf{H}_K includes information about the node and its context within the graph.
- This is like word embeddings passing through a transformer network. These represent
 words at the start but represent the word meanings in the context of the sentence at the
 end.

Graph Level Tasks

- describe whole graph

Determine

- class categories, e.g. molecule is poisonous
- regression values, e.g. molecule boiling and freezing point based on graph structure and node embeddings

For graph-level tasks, the output node embeddings are combined (e.g., by averaging), and the resulting vector is mapped via a linear transformation or neural network to a fixed-size vector

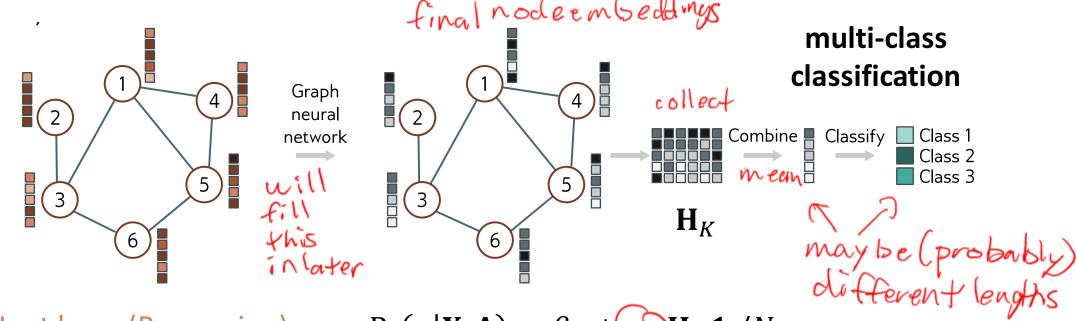
Typical Three Types of Models

• Graph level regression & classification

- Node level regression & classification
- Edge prediction

Look at prediction heads first.

Graph level regression & classification



Last layer (Regression):

$$Pr(y|\mathbf{X}, \mathbf{A}) = \beta_K + \omega_K \mathbf{H}_K \mathbf{1} / N$$

Last layer (Classification): $\Pr(y = 1 | \mathbf{X}, \mathbf{A}) = \operatorname{sigmoid}[\beta_K + \omega_K \mathbf{H}_K \mathbf{1} / N]$

Regression Loss Function: Least Squares Loss

Classification Loss Function: (Binary) Cross Entropy

 eta_K is scalar

Mean pooling

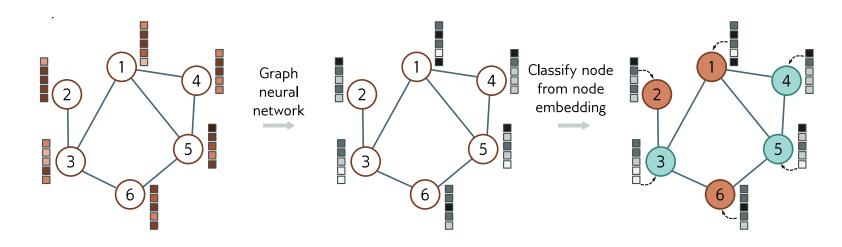
 ω_K is $1 \times D$ row vector

 \mathbf{H}_K is the $D \times N$ output embedding matrix

1 is an $N \times 1$ column vector of 1s

binary classification, can do softmax for multiclass.

Node level binary regression & classification



$$\Pr(y^{(n)}|\mathbf{X},\mathbf{A}) = \beta_K + \omega_K \mathbf{h}_K^{(n)}$$

Last layer (Regression): $\Pr(y^{(n)}|\mathbf{X},\mathbf{A}) = \beta_K + \omega_K \mathbf{h}_K^{(n)}$ embedding of node of last layer (Classification): $\Pr(y^{(n)} = 1 | \mathbf{X}, \mathbf{A}) = \operatorname{sigmoid}[\beta_K + \omega_K \mathbf{h}_K^{(n)}]$

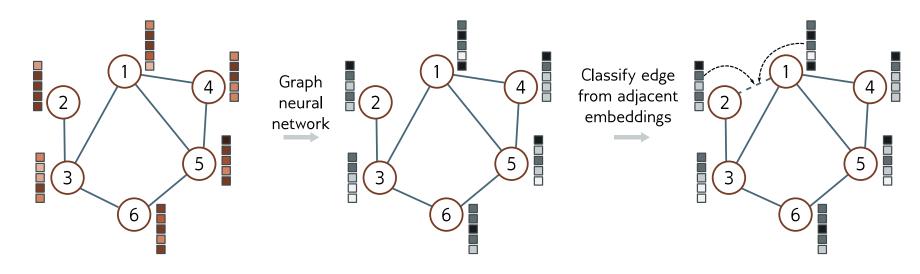
 $\mathbf{h}_{\kappa}^{(n)}$ is the $D \times 1$ output embedding vector node for n

Regression Loss Function: Least Squares Loss

Classification Loss Function: (Binary) Cross Entropy

Edge prediction (classification)

Predict whether edge should exist or not.



Last layer:
$$Pr(y^{(mn)} = 1 | \mathbf{X}, \mathbf{A}) = sigmoid[\mathbf{h}_K^{(m)T} \mathbf{h}_K^{(n)}]$$

$$[1 \times D][D \times 1]$$

of node embedding

signoid input

Classification Loss Function: Binary Cross Entropy

Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Graph convolutional network

These models are convolutional in that they update each node by aggregating information from nearby nodes.

As such, they induce a relational inductive bias (i.e., a bias toward prioritizing information from neighbors).

 $\begin{array}{lll} \mathbf{H}_1 &=& \mathbf{F}[\mathbf{X},\mathbf{A},\phi_0] \\ \mathbf{H}_2 &=& \mathbf{F}[\mathbf{H}_1,\mathbf{A},\phi_1] \\ \mathbf{H}_3 &=& \mathbf{F}[\mathbf{H}_2,\mathbf{A},\phi_2] \\ \vdots &=& \vdots \\ \mathbf{H}_K &=& \mathbf{F}[\mathbf{H}_{K-1},\mathbf{A},\phi_{K-1}], \end{array}$

A function $F[\cdot]$ with parameters ϕ_i that takes the node embeddings and adjacency matrix and outputs new node embeddings

each embeddings
old embeddings > new embeddings
both are per nocle 37

Equivariance and Invariance

Every layer should be *equivariant* to index permutations

$$\mathbf{H}_{k+1}\mathbf{P} = \mathbf{F}[\mathbf{H}_k\mathbf{P}, \mathbf{P}^T\mathbf{A}\mathbf{P}, \boldsymbol{\phi}_k]$$

And for node classification and edge prediction the output should be

invariant to index permutations dropping to
$$\beta D$$
 by summing $y = \text{sigmoid}[\beta_K + \omega_K \mathbf{H}_K \mathbf{1}/N] = \text{sigmoid}[\beta_K + \omega_K \mathbf{H}_K \mathbf{P} \mathbf{1}/N]$

TLDR permutations move outputs that donot change them

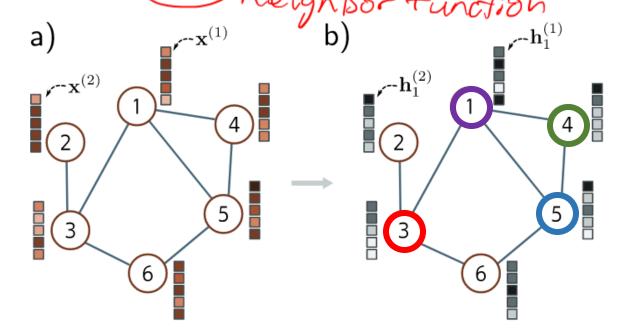
Example Graph Convolution Network (GCN) layer

At each node n in layer k, aggregate information from neighboring

nodes

$$agg[n,k] = \sum_{m \in ne[n]} \mathbf{h}_{k}^{(m)}$$
 vectors of neighbors of

where ne[n] returns the set of indices of the neighbors of node n.



$$ne[1] = \{4, 5, 3\}$$

$$agg[n = 1, k = 1] = \mathbf{h}_1^{(4)} + \mathbf{h}_1^{(5)} + \mathbf{h}_1^{(3)}$$

Example Graph Convolution Network (GCN) layer

At each node n in layer k, aggregate information from neighboring nodes

$$agg[n,k] = \sum_{m \in ne[n]} \mathbf{h}_k^{(m)}$$

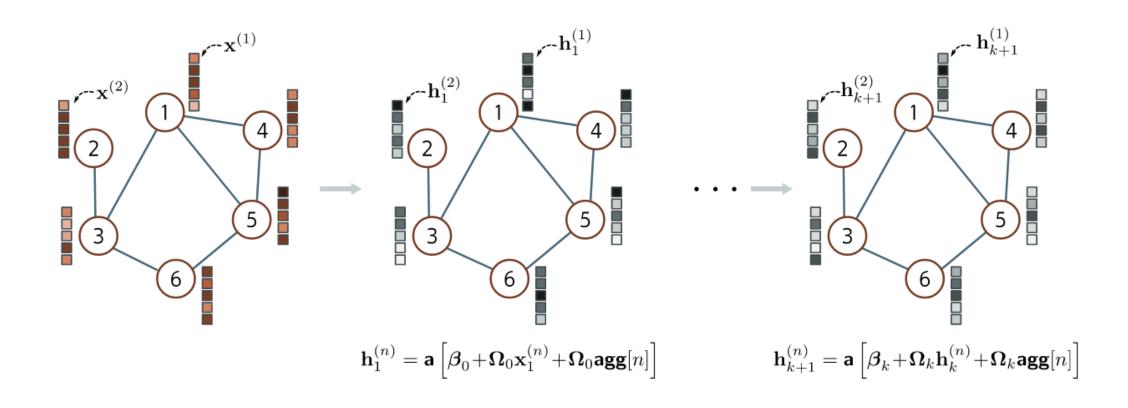
where ne[n] returns the set of indices of the neighbors of node n.

Then a linear transform to the current node vector and the aggregate for the current node and add a bias.

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\boldsymbol{\beta}_k + \boldsymbol{\Omega}_k \cdot \mathbf{h}_k^{(n)} + \boldsymbol{\Omega}_k \cdot \operatorname{agg}[n, k] \right]$$

$$\stackrel{D \times 1}{=} \stackrel{D \times D}{=} \stackrel{D \times 1}{=} \stackrel{D \times D}{=} \stackrel{D \times 1}{=} \stackrel$$

Graph convolution layers



1st Layer

Input

41

k+1st Layer

Example Graph Convolution Network (GCN) layer

We apply the following equation

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\beta_k + \Omega_k \cdot \mathbf{h}_k^{(n)} + \Omega_k \cdot \operatorname{agg}[n, k] \right]$$

to the entire node hidden layers matrix, \mathbf{H}_k , by noting that $\mathbf{H}_k\mathbf{A}$ produces a matrix where the n^{th} column is agg[n,k].

a matrix where the
$$n^{th}$$
 column is $agg[n, k]$.

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k + \boldsymbol{\Omega}_k \mathbf{H}_k \mathbf{A} \right] + \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k (\mathbf{A} + \mathbf{I}) \right],$$

$$= \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k (\mathbf{A} + \mathbf{I}) \right],$$

Tinear function to divide function

"\" "\" \forall c Adjacency listis input, not fixed

"\" "\" \forall c Adjacency listis input, not fixed

Example Graph Convolution Network (GCN) layer

We apply the following equation

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\beta_k + \Omega_k \cdot \mathbf{h}_k^{(n)} + \Omega_k \cdot \operatorname{agg}[n, k] \right]$$

to the entire node hidden layers matrix, \mathbf{H}_k , by noting that $\mathbf{H}_k \mathbf{A}$ produces a matrix where the n^{th} column is agg[n,k].

$$\mathbf{H}_{k+1} = \mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k + \boldsymbol{\Omega}_k \mathbf{H}_k \mathbf{A} \right]$$

= $\mathbf{a} \left[\boldsymbol{\beta}_k \mathbf{1}^T + \boldsymbol{\Omega}_k \mathbf{H}_k (\mathbf{A} + \mathbf{I}) \right],$

Note that this is (1) equivariant to permutations, (2) handles arbitrary number of neighbors, (3) exploits graph structure and (4) share parameters

Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Graph classification example

We can put it all together and add a sigmoid layer

$$\begin{aligned} \mathbf{H}_1 &=& \mathbf{a} \left[\boldsymbol{\beta}_0 \mathbf{1}^T + \boldsymbol{\Omega}_0 \mathbf{X} (\mathbf{A} + \mathbf{I}) \right] \\ \mathbf{H}_2 &=& \mathbf{a} \left[\boldsymbol{\beta}_1 \mathbf{1}^T + \boldsymbol{\Omega}_1 \mathbf{H}_1 (\mathbf{A} + \mathbf{I}) \right] \\ &\vdots &=& \vdots \\ \mathbf{H}_K &=& \mathbf{a} \left[\boldsymbol{\beta}_{K-1} \mathbf{1}^T + \boldsymbol{\Omega}_{K-1} \mathbf{H}_{k-1} (\mathbf{A} + \mathbf{I}) \right] \\ \mathbf{f}[\mathbf{X}, \mathbf{A}, \boldsymbol{\Phi}] &=& \operatorname{sig} \left[\boldsymbol{\beta}_K + \boldsymbol{\omega}_K \mathbf{H}_K \mathbf{1} / N \right], \end{aligned}$$

For classification on molecules,

 $X \in \mathbb{R}^{118 \times N}$: one hot encoding of 118 elements

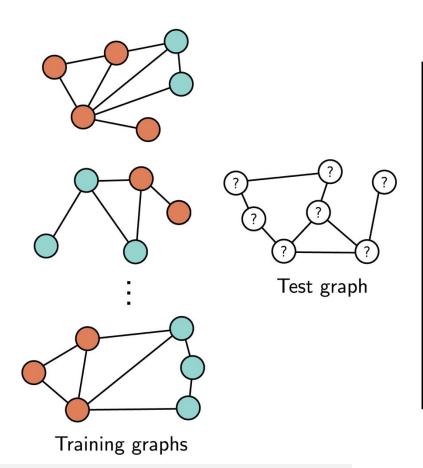
 $\Omega_0 \in \mathbb{R}^{D \times 118}$: convert to D-dimensional embeddings

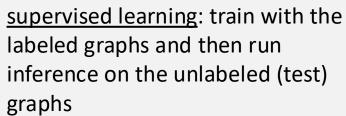
 β_K : is a scalar

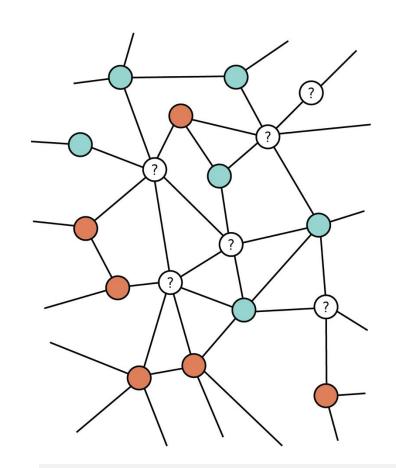
 ω_K : a 1 × D parameters row vector

Inductive

vs. Transductive







semi-supervised learning: train with the labeled nodes, then run inference to determine label for unlabeled nodes

Node classification example

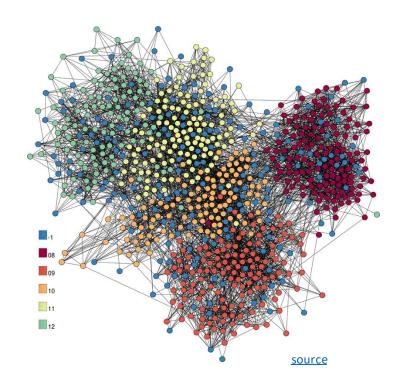
Assume *transductive* binary node *classification* with millions of nodes, partially labeled.

Same network body as graph classification, but different head:

$$\mathbf{f}[\mathbf{X}, \mathbf{A}, \mathbf{\Phi}] = \operatorname{sigmoid}[\beta_K \mathbf{1}^T + \boldsymbol{\omega}_K \mathbf{H}_K]$$

No mean pooling. Output is $1 \times N$.

Train with binary cross-entropy loss on nodes with labels.



Node classification example

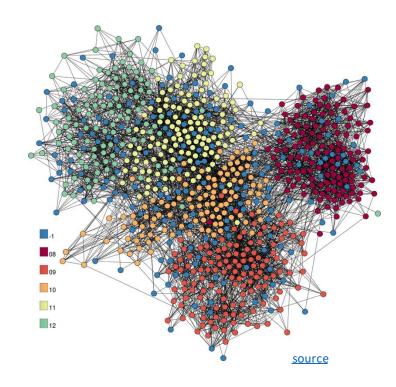
Assume *transductive* binary node *classification* with millions of nodes, partially labeled.

Challenges:

tobig?

- memory limitations: need to store every node and hidden layer embedding during training
- 2. how to perform SGD with basically one batch!

works but weird?



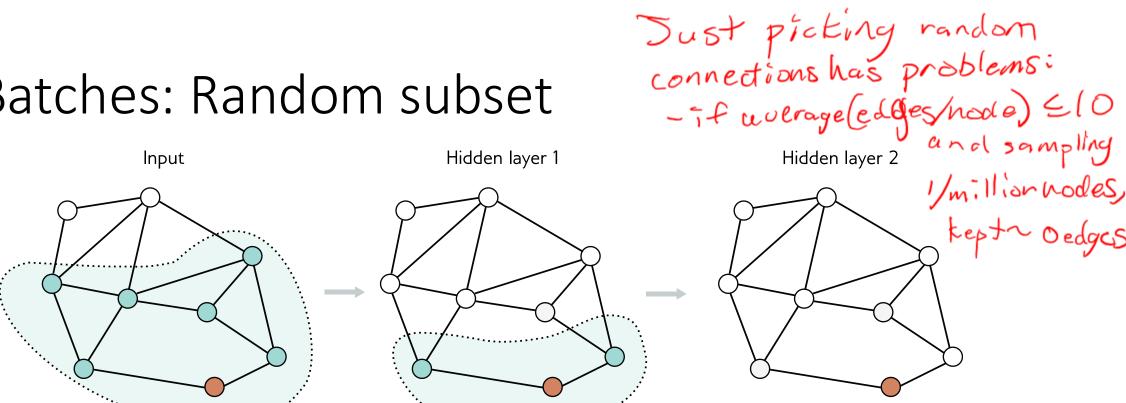
Solutions: Choosing batches for graphs

1. Choose random subset of nodes

2. Neighborhood sampling

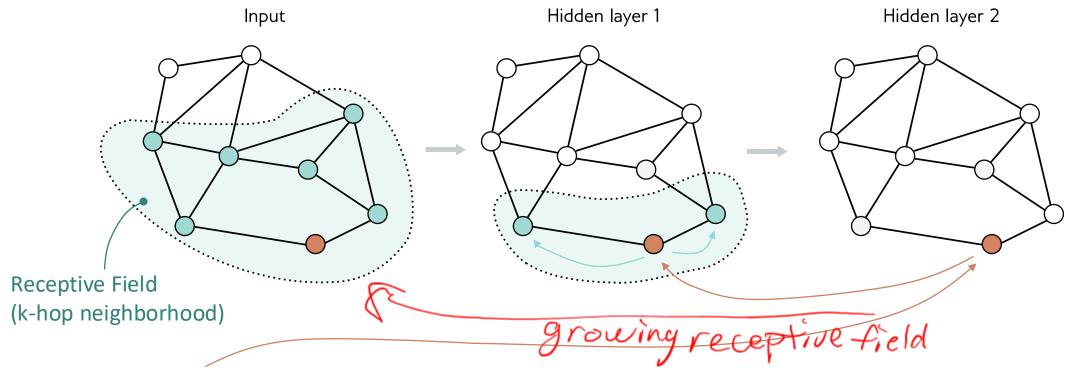
3. Graph partitioning

Batches: Random subset



input of H1 of H2 or of labeled nodes at each training step, And only include them and their (k) nop neighborhoods". sees sees sees sees taway kisfrom # of layers in GNN

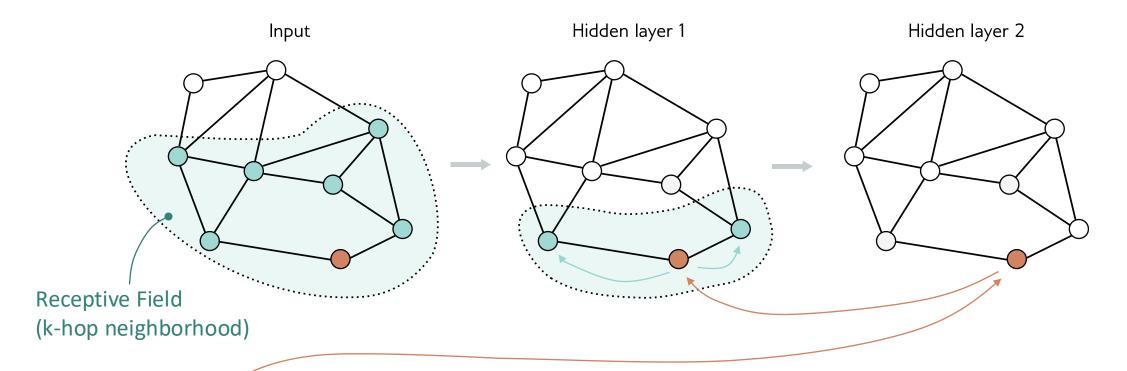
Batches: Random subset



Each node is dependent on the same node in the previous layer and its neighbors because of agg[]

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\beta_k + \Omega_k \cdot \mathbf{h}_k^{(n)} + \Omega_k \cdot \operatorname{agg}[n, k] \right]$$

Batches: Random subset

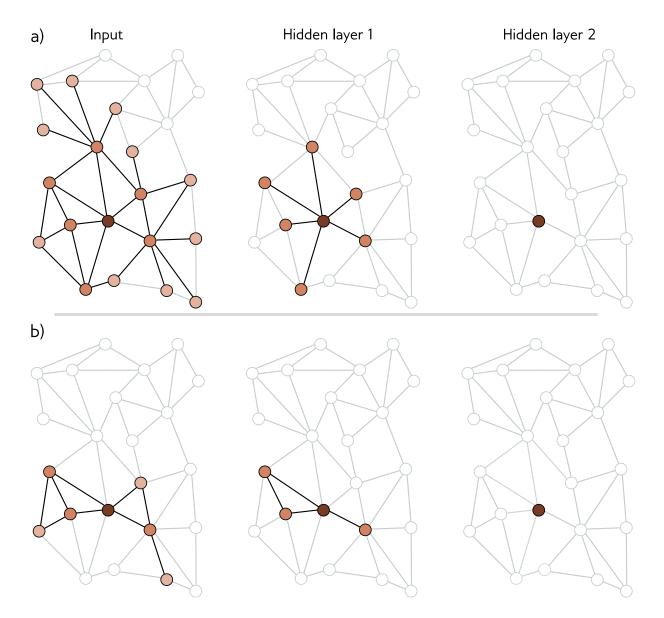


Each node is dependent on the same node in the previous layer and its neighbors because of agg[].

$$\mathbf{h}_{k+1}^{(n)} = \mathbf{a} \left[\beta_k + \Omega_k \cdot \mathbf{h}_k^{(n)} + \Omega_k \cdot \operatorname{agg}[n, k] \right]$$

With many layers and dense connection, it can quickly expand to encompass every node.

Neighborhood Sampling



Random Sampling:

Use all the neighbors

Neighborhood Sampling:

Use $\max n$ of the neighbors.

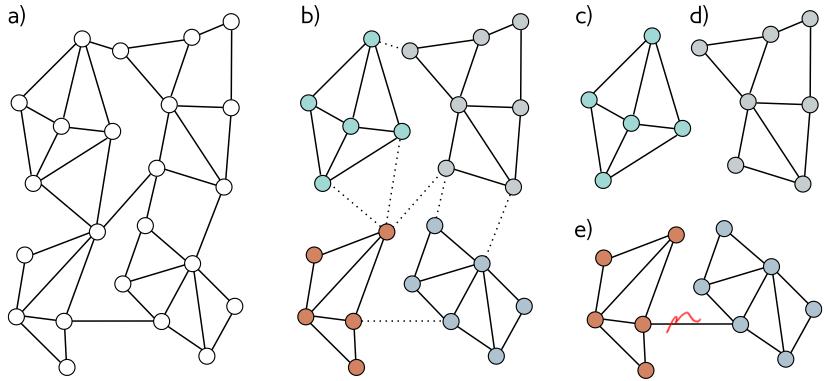
Here n = 3.

timits sample size

See Notebook 13.3

Graph Partitioning

all internal edges survive.



Disconnect edges of the original to create maximally connected disjoint subsets

Split into train, test and validation sets and train just like in the inductive setting.

Alternatives to Mean Pooling for Node Combinations

• **Diagonal enhancement**: current node is multiplied by $(1 + \epsilon_k)$, where ϵ_k is a learned scalar for each layer

$$\mathbf{H}_{k+1} = \mathbf{a}[\beta_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}_k (\mathbf{A} + (1 + \epsilon_k)\mathbf{I})]$$

Residual connections: Include the current node in the sum

$$\mathbf{H}_{k+1} = \mathbf{a}[\beta_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}_k \mathbf{A})] + \mathbf{H}_k$$

Mean aggregation: take average instead of sum of neighbors

$$agg[n] = \frac{1}{|ne[n]|} \sum_{m \in ne[n]} \mathbf{h}_m$$

• **Kipf normalization**: downweight neighboring nodes with a lot of neighbors

$$agg[n] = \sum_{m \in ne[n]} \frac{h_m}{\sqrt{|ne[n]|}|ne[m]|}$$

Max pool aggregation: element-wise max of all neighbors to current node

$$agg[n] = \max_{m \in ne[n]} [\mathbf{h}_m]$$

Aggregation by Attention

Weights depend on data at the nodes.

Apply linear transform to current node:

$$\mathbf{H'}_k = \beta_k \mathbf{1}^T + \mathbf{\Omega}_k \mathbf{H}$$

Then the similarity s_{mn} of each transformed node embedding $\mathbf{h'}_m$ to the transformed node embedding $\mathbf{h'}_n$ is computed by concatenating the pairs, taking a dot product with a column vector ϕ_k of learned parameters, and applying an activation function:

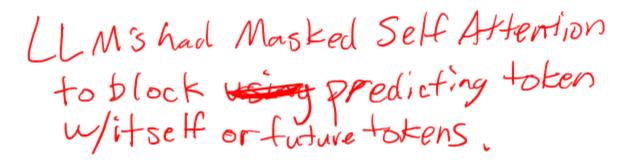
$$S_{mn} = \mathbf{a} \begin{bmatrix} \phi_k^T \begin{bmatrix} \mathbf{h}'_m \\ \mathbf{h}'_n \end{bmatrix} \end{bmatrix} + \text{two node vectors}$$

$$\text{dot product}$$

$$\text{dot product}$$

$$\mathbf{H}_{k+1} = \mathbf{a} \begin{bmatrix} \mathbf{H}'_k \cdot \text{Softma} \mathbf{x} [\mathbf{S}, \mathbf{A} + \mathbf{I}] \end{bmatrix}$$

Softmask[S, A+I]

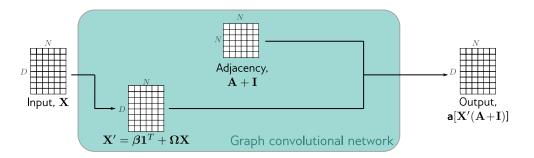


The function Softmask[S, A+I]

- computes the attention values by applying softmax operation separately to each column of its first argument S,
- but only after setting values where the second argument A + I is zero to negative infinity, so they do not contribute.
- This ensures that the attention to non-neighboring nodes is zero.

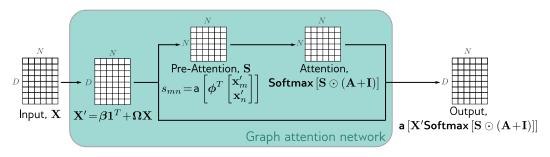
A makes neighbors non-zero I makes self non-zero

Graph Attention



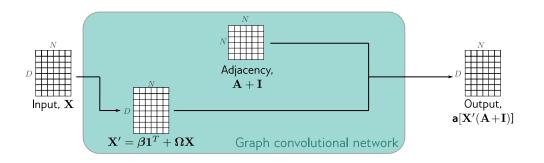
Regular graph convolution

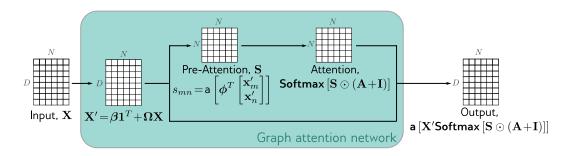
just adding together Wegunlweight



Graph attention

Graph Attention



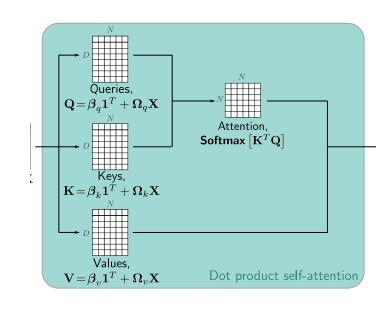


Regular graph convolution

Graph attention

Similar to Transformer Self Attention, except

- K, Q and V are all the same
- Different similarity measure
- Only attends to neighbors

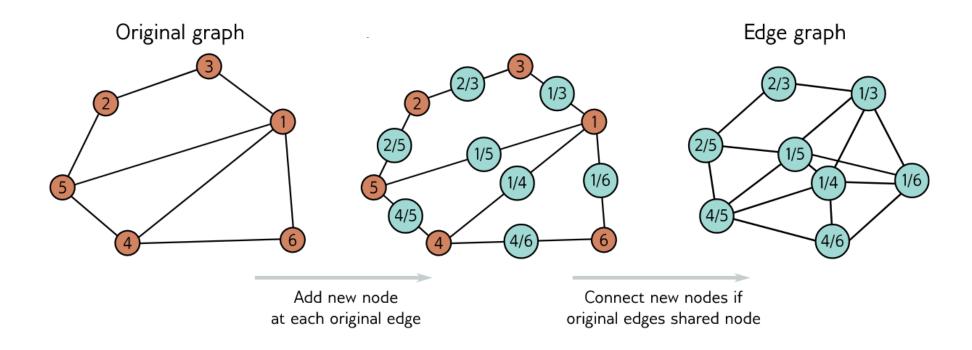


Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs

Edge Graphs



Handled by simple transformation from node graphs.

Then process as node graph.

Transform back to edge graph.

Any Questions?

Moving on

- Basic definition and examples
- Graph representation
- Properties of Adjacency Matrix
- Graph neural network, tasks and loss functions
- Graph convolutional network
- Graph & Node classification
- Edge graphs